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Abstract
We address the general problem of hard objects on random lattices, and
emphasize the crucial role played by the colourability of the lattices to ensure
the existence of a crystallization transition. We first solve explicitly the
naive (colourless) random-lattice version of the hard-square model and find
that the only matter critical point is the non-unitary Lee–Yang edge singularity.
We then show how to restore the crystallization transition of the hard-square
model by considering the same model on bicoloured random lattices. Solving
this model exactly, we show moreover that the crystallization transition point
lies in the universality class of the Ising model coupled to 2D quantum gravity.
We finally extend our analysis to a new two-particle exclusion model, whose
regular lattice version involves hard squares of two different sizes. The exact
solution of this model on bicolourable random lattices displays a phase diagram
with two (continuous and discontinuous) crystallization transition lines meeting
at a higher order critical point, in the universality class of the tricritical Ising
model coupled to 2D quantum gravity.

PACS numbers: 05.50.+q, 04.60.Nc, 61.50.Ks, 64.60.−i

1. Introduction

In lattice statistical mechanics, universality classes usually do not depend on the lattice over
which the model is defined, but only on the symmetries of the interactions. The situation,
however, becomes more subtle when the symmetries of the interactions themselves strongly
depend on the properties of the underlying lattice. A famous example of such behaviour
is provided by the general problem of ‘hard’ objects on two-dimensional lattices. In these
models, each site of the lattice may be in two states, occupied or empty, but if a site is
occupied, then necessarily its nearest neighbours must be empty. The models are further
defined by attaching an activity z per occupied vertex. For regular lattices in two dimensions,
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an exact solution for the thermodynamics of the model exists so far only in the case of the
triangular lattice (hard hexagon model, solved by Baxter [1]). In this case, two critical points
were found at values z± = (

1±√
5

2

)5
, z− < 0, z+ > 0, respectively governed by the Lee–Yang

edge singularity in 2D [2, 3] (non-unitary conformal field theory (CFT) with central charge
c(2, 5) = −22/5) and the critical three-state Potts model (unitary CFT with central charge
c(5, 6) = 4/5). Despite recent progress [4, 5], the hexagonal lattice and square lattice cases
remain elusive [6]. Numerical evidence however seems to indicate that they still have two
critical points z− < 0 and z+ > 0, and while the first one still corresponds to the Lee–Yang
edge singularity, the other displays the exponents of the critical Ising model [4] (CFT with
c(3, 4) = 1/2). The difference in universality class at z+ for the triangular lattice on one hand
and the hexagonal or square lattice on the other may be simply understood from the symmetries
of the lattices. Indeed, this critical point corresponds in all cases to a crystallization transition,
where the hard particles occupy preferentially a particular sublattice of the lattice at hand. The
common feature of the square and hexagonal lattices is their vertex-bicolourability (bipartite
nature) which naturally defines two equivalent mutually excluding sublattices corresponding
to two possible symmetric crystalline ground states. The triangular lattice on the other hand
is not vertex-bicolourable, but vertex-tricolourable instead, which allows the definition of
three equivalent mutually excluding sublattices corresponding to three possible symmetric
crystalline states. These two- or three-fold symmetries give rise naturally to critical points
with Z2 (Ising) or Z3 (three-state Potts) symmetries.

The purpose of this paper is to study similar hard particle models on random lattices such
as those used to generate discrete models of 2D quantum gravity. The aim of this study is
twofold: (1) to check the crucial role played by the vertex-colourability of the underlying
lattices in determining the physical behaviour of the models and (2) to give a ‘gravitational’
proof that the crystallization transition point z+ indeed lies in the critical Ising universality
class in the case of hard particles on bicolourable lattices.

More precisely, in this paper, we first solve explicitly the problem of hard particles on
arbitrary random lattices and show that in the absence of any colourability constraint (Euclidean
random surfaces), only the Lee–Yang critical point survives at some negative value z = z−.
We then solve the same model on the so-called Eulerian random surfaces, i.e. random lattices
for which we impose vertex-bicolourability, and find that the crystallization transition point
z = z+ is restored in this case, and that it belongs to the universality class of the critical Ising
model coupled to 2D quantum gravity.

We next extend our analysis to higher order critical points and show how to recover the
tricritical Ising universality class (CFT with central charge c(4, 5) = 7/10) by considering a
two-particle exclusion model on vertex-bicolourable lattices. We again give a gravitational
proof of this fact by explicitly solving the model on random vertex-bicolourable lattices.

The paper is organized as follows. In section 2 we study the model of hard particles
and first recall a few known facts on its regular honeycomb and square lattice version
(section 2.1). We then solve the model in section 2.2 on arbitrary random planar tetravalent
lattices, by using a two-matrix integral. In addition to the activity z per particle, the latter
includes an extra weight g per vertex (occupied or not). We derive explicitly the gravitational
critical line g = gc(z) selecting arbitrarily large lattices, allowing us to reach the interesting
thermodynamic behaviour of the model. On this line, we find a unique critical point of the
matter system at some z = z−, which we identify as the Lee–Yang edge singularity. In
section 2.3, we introduce a four-matrix model describing the same problem now on random
vertex-bicolourable lattices. We solve this model exactly in the case of trivalent such lattices
and obtain in particular the new gravitational critical line g = gc(z). Along this line, we now
find two matter critical points at some values z = z− < 0 and z = z+ > 0. The first one is still
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identified as the Lee–Yang edge singularity, while the new one is identified as a crystallization
transition point in the universality class of the critical Ising model. Section 3 is devoted to
the study of a more sophisticated two-particle exclusion model in which we allow sites to be
occupied by single particles (with activity z1 per particle) or pairs of particles (with activity
z2 per pair), while the exclusion rule imposes that each edge of the lattice is shared by a total
of at most two particles. In section 3.1, we present its expected phase diagram on a regular
square or honeycomb lattice obtained by applying the same ideas as above, i.e. relating the
different phases of the model to the compatibility between the exclusion rules on one hand
and the vertex-bicolourability of the lattice on the other. These ideas are tested in section 3.2
where we solve the model on random trivalent vertex-bicolourable lattices, by means of a
six-matrix integral. The gravitational critical surface g = gc(z1, z2) is explicitly shown to
contain the expected matter phase diagram, with, in particular, a critical Ising transition line
meeting a first order line at a tricritical Ising transition point for some positive values of
the activities (z1, z2) = (z

(t)

1 , z
(t)

2 ). It also displays a line of Lee–Yang edge singularities
terminating at a higher order critical point described by a non-unitary CFT with central charge
c(2, 7) = −68/7 at some point z1 = z

(t ′)
1 > 0 and z2 = z

(t ′)
2 < 0. A few concluding remarks

are gathered in section 4, while additional technical derivations or more involved cases are left
to appendices A–E.

2. Nearest neighbour exclusion models on regular and random lattices

In this section, we study generic models of nearest neighbour exclusion in which hard particles
live on the vertices of either regular or random lattices. The exclusion rule simply states that
when a vertex is occupied by a particle, all its nearest neighbours must be vacant. We first
briefly recall known facts about the so-called ‘hard square’ model of hard particles on the
regular square lattice [5–7] and the corresponding model of hard particles on the regular
honeycomb lattice [8]. As explained below, these models share the same qualitative phase
diagram, where the structure of the ordered phase strongly relies on the vertex-bicolourability
(i.e. the bipartite nature) of the underlying lattice. We then present an exact solution of the same
models on random lattices. We first consider the case of arbitrary random graphs standardly
used in the context of discretized 2D quantum gravity [9, 10]. We note the disappearance of
the ordered phase which can be traced back to the generic lack of vertex bicolourability of
the graphs. We therefore study the case of vertex-bicolourable (or so-called Eulerian) random
graphs, for which we derive the phase diagram in the planar limit. As expected, the ordered
phase is reinstated in this case, and we find a continuous transition point in the universality
class of the critical Ising model coupled to 2D quantum gravity.

2.1. Nearest neighbour exclusion on the square and honeycomb lattices

Let us consider nearest neighbour particle exclusion models on respectively the regular trivalent
honeycomb lattice and regular tetravalent square lattice. Each particle comes with an activity z
and excludes its nearest neighbours. A simple pictorial representation of the exclusion rule is to
replace particles with non-overlapping hexagons, resp. squares, with centres on the vertices of
the lattice, as depicted in figure 1. The phase diagrams of both models have been derived using
numerical (corner) transfer matrix methods in [6, 8]. They both display two critical points.

The first ‘non-physical’ critical point occurs at a negative value z− of the activity and
corresponds to the so-called Lee–Yang edge singularity [11] (non-unitary CFT with central
charge c(2, 5) = −22/5), with the estimates z(3)− = −0.15 . . . (extracted from [5]) for the
(trivalent) honeycomb lattice and z

(4)
− = −0.122 . . . [6] for the (tetravalent) square lattice.



3824 J Bouttier et al

(a) (b)

Figure 1. Sample configurations of the hard particle model on the honeycomb (a) and square
(b) lattices. The exclusion constraint between particles (represented as black dots) may be translated
into a non-overlapping constraint for hard tiles, either hexagons (a) or squares (b).

The values z− of z at these critical points can be obtained from the singularity of the
thermodynamic free energy F(z) expressed as an alternating series in powers of z. For
z

>→ z−, the singular part of the free energy behaves as F(z)|sing ∼ (z − z−)2−α where
α = 7/6 is the thermal exponent predicted by the CFT. This apparently non-physical critical
point with negative activity can be reinterpreted as a positive activity critical point at t+ = −z−
for heaps of hexagons, resp. squares, with activity t = −z per object in 2 + 1 dimensions, with
free energy �(t) = −F(z = −t) [12].

The second ‘physical’ critical point occurs at a positive value z+ and corresponds to a
continuous transition between a low activity disordered fluid phase and a high activity ordered
crystalline phase where the hard particles condense preferably on one of the two sublattices
of the lattice. Estimates for the critical points are z

(3)
+ = 7.92 . . . [8] and z

(4)
+ = 3.7962 . . .

[6]. More precisely, the honeycomb and square lattices are bipartite lattices whose vertices
can be naturally bicoloured, say black and white, in such a way that a vertex of one colour
has only neighbours of the other. The corresponding order parameter M = ρB − ρW , which
measures the difference of density of particles between the black and white sublattices, is zero
in the fluid phase and non-zero in the crystalline phase. Based on numerical evidence, it is
commonly accepted that this transition lies in the universality class of the critical Ising model
(CFT with c(3, 4) = 1/2), with a thermal exponent α = 0 and a magnetic exponent β = 1/8
corresponding to the singularity of the order parameter M ∼ (z − z+)

β for z
>→ z+.

Note that the two critical points above are essentially different in nature. The Lee–Yang
critical point is much more universal and does not rely on any particular geometrical feature
of the lattice. It is also observed for hard particles on the triangular lattice (the so-called ‘hard-
hexagon’ model). On random lattices, it was first observed for the hard dimer model in [13]
and, as we shall see, it will show in all the hard particle models studied throughout this paper.
In contrast, the universality of the crystallization point strongly relies on the bicolourability
of the underlying lattice. In the case of the triangular lattice, for instance, one finds instead a
crystallization point governed by the critical three-state Potts model (CFT with c(5, 6) = 4/5),
directly related to the tricolourability of the lattice. In the case of random graphs, we shall
also find that the bicolourability is crucial for recovering the Ising crystallization point.

2.2. Nearest neighbour exclusion model on a random lattice

We now turn to the study of nearest neighbour exclusion models on random graphs. In this
section we will concentrate on the case of hard particles living at the vertices of arbitrary
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random tetravalent graphs. We use the standard matrix integral method to generate all
configurations of the exclusion model on all possible tetravalent fatgraphs, including a weight
g per tetravalent vertex (empty or occupied), z per particle and the usual weight N2−2h for
graphs of genus h. We are mainly interested in the planar limit N → ∞ that selects only
graphs with the topology of the sphere h = 0. More precisely, the generating function reads

Z
(4)
N (g, z) =

∫
dA dB e−NTrV (A,B)

V (A,B) = −1

2
A2 + AB − g

B4

4
− gz

A4

4

(2.1)

where A,B are Hermitian matrices with size N × N , and the measure is normalized so that
Z
(4)
N (0, 0) = 1. The Feynman diagrammatic expansion of (2.1) is readily seen to generate

tetravalent graphs with two types of vertices, occupied (A4/4, with weight gz) and empty
(B4/4 with weight g), and with the propagators given by the inverse of the quadratic part of
V , namely:

Vquad = 1

2
(A,B)Q

(
A

B

)
and

(〈AA〉 〈AB〉
〈BA〉 〈BB〉

)
∝ Q−1 =

(
0 1
1 1

)
(2.2)

hence 〈BijBkl〉 = δilδjk/N and 〈AijBkl〉 = δilδjk/N (for a general review on matrix models
see [9, 10] and references therein). The vanishing of the 〈AA〉 propagator clearly enforces the
exclusion rule.

To compute (2.1), we apply the standard technique of bi-orthogonal polynomials [9].
We introduce the monic bi-orthogonal polynomials pn, qm with respect to the scalar product
(f, g) = ∫

dx dy e−NV (x,y)f (x)g(y), satisfying

(pn, qm) = hnδn,m (2.3)

where the ‘norms’ hn are fully determined by the requirement that the polynomialpn be monic
of degree n. Introducingh(0)n = hn(g = 0, z = 0), and after reduction of (2.1) to an eigenvalue
integral, we may rewrite [9]

Z
(4)
N (g, z) =

N−1∏
n=0

hn

h
(0)
n

(2.4)

which reduces the computation of the partition function to that of the hn.
We introduce the operators of multiplication by eigenvaluesQ1 and Q2, expressed on the

orthogonal polynomials as Q1pn(x) = xpn(x) and Q2qm(y) = yqm(y), and the operators of
derivation with respect to eigenvalues P1 and P2 expressed as P1pn(x) = p′

n(x), P2qm(y) =
q ′
m(y). Integrating by parts, we get the system of equations

(P1pn, qm) = N

(
∂V

∂x
(x, y)pn(x), qm(y)

)
= N(pn,Q2qm)− N

((
Q1 + gzQ3

1

)
pn, qm

)
(pn, P2qm) = N

(
∂V

∂y
(x, y)pn(x), qm(y)

)
= N(Q1pn, qm)− Ng

(
pn,Q

3
2qm

)
.

(2.5)

Note that Q1pn is a linear combination of the pj for 0 � j � n + 1, and similarly for
Q2qm, combination of the qi for 0 � i � m + 1, while P1pn is a linear combination of
the pj for 0 � j � n − 1 and similarly P2qm, combination of the qi for 0 � i � m − 1.
From orthogonality, we see that for m > n + 3 in the first line of 2.5 and for m < n − 3
in the second, we get, respectively, that (pn,Q2qm) = 0 and (Q1pn, qm) = 0. Hence
the linear combinations reduce respectively to finite ranges of indices n − 3 � j � n + 1
and m − 3 � i � m + 1. Moreover, from the parity of the potential V (x, y) = V (−x,−y),
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we deduce the parity of the polynomials: pn(x) = (−1)npn(−x) and qm(y) = (−1)mqm(−y).
So finally the action of Q1 and Q2 takes the form

Q1pn(x) = pn+1(x) + rnpn−1(x) + snpn−3(x)

Q2qm(y) = qm+1(y) + r̃mqm−1(y) + s̃mqm−3(y).
(2.6)

The fact that Q1 and Q2 have a finite range is generic of multimatrix models with polynomial
interactions. Equations (2.5) and (2.6) can be expressed in an operatorial way. Introducing
the adjoint operatorsQ†

1 and Q†
2 with respect to the above scalar product, equation (2.5) takes

the form

P1

N
= Q

†
2 − Q1 − gzQ3

1
P2

N
= Q

†
1 − gQ3

2. (2.7)

Let us introduce the shift operatorsσ, τ acting respectively on the p and q asσpn = pn+1, τqn =
qn+1 and their adjoints σ †, τ †, such that

σ † = τ−1v τ † = σ−1v (2.8)

where v = v† is the diagonal operator acting as vpn = vnpn and vqn = vnqn, with

vn = hn

hn−1
. (2.9)

Analogously we define the diagonal operators ν, r, s, r̃ , s̃ acting on pn and qn respectively as
the multiplication by n, rn, sn, r̃n, s̃n. In terms of these operators, the P and Q operators read
finally

Q1 = σ + σ−1r + σ−3s

Q2 = τ + τ−1r̃ + τ−3s̃

Q
†
1 = τ−1v + rv−1τ + s(v−1τ )3

Q
†
2 = σ−1v + r̃v−1σ + s̃(v−1σ)3

P1 = σ−1ν + O(σ−3)

P2 = τ−1ν + O(τ−3).

(2.10)

To obtain a system of recursion relations involving the sequence vn = hn/hn−1, let us now
write order by order in τ and σ the two relations (2.7):

O(σ−1) : σ−1 ν

N
= σ−1(v − r)− gz(rσ−1r + σ−1r2 + (σ−1r)2σ + σ−1s + σ−2sσ + σ−3sσ 2)

O(σ) : 0 = r̃v−1σ − σ − gz(σr + rσ + σ−1rσ 2)

O(σ 3) : 0 = s̃(v−1σ)3 − gzσ 3

(2.11)

and

O(τ−1) : τ−1 ν

N
= τ−1v − g(r̃τ−1r̃ + τ−1r̃2 + (τ−1 r̃)2τ + τ−1 s̃ + τ−2s̃τ + τ−3 s̃τ 2)

O(τ) : 0 = rv−1τ − g(τ r̃ + r̃τ + τ−1r̃τ 2)

O(τ 3) : 0 = s(v−1τ )3 − gτ 3.

(2.12)

It is not difficult to check that the first lines of (2.11) and (2.12) are equivalent modulo
the other equations, so that we are left with five equations for the five unknown sequences
vn, rn, sn, r̃n, s̃n.

The planar (genus zero) limit of these equations amounts to taking n,N → ∞ with x =
n/N fixed, in which case all sequences converge to functions of x. More precisely, we define
the rescaled limits V (x), R(x), S(x), R̃(x), S̃(x) of respectively gvn, grn, g

2sn, gr̃n, g
2 s̃n.
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These functions are determined by rewriting (2.11) and (2.12) in this limit which amounts to
treating all operators as scalars (in particular σ = τ = 1), with the result

gx = V − R − 3z(R2 + S)

0 = R̃ − V (1 + 3zR)
0 = S̃ − zV 3

0 = R − 3V r̃
0 = S − V 3.

(2.13)

After substitutions, this reduces to

gx = ϕ(V ) ≡ V (1 − 3zV 2)− 3V 2

(1 − 9zV 2)2
. (2.14)

For fixed g and z this equation defines upon inversion the function V (x) encoding the
asymptotic properties of the sequence vn, hence those of the hn. More precisely, using
equation (2.4), the thermodynamic free energy in the planar limit reads

f
(4)
0 (g, z) = − lim

N→∞
log

(
Z
(4)
N (g, z)

)/
N2

= −
∫ 1

0
dx(1 − x) log

(
V (x)

gx

) (2.15)

where the normalization gx in the logarithm ensures the correct normalization of the partition
function, namely f (4)

0 (g = 0, z = 0) = 0. For g sufficiently small, equation (2.14) determines
a unique solution V (x) which is monotonic and such that V (x) ∼ gx for small x. To compute
f
(4)
0 (g, z), we must substitute this solution into (2.15) and perform the integration. It is natural

to perform the change of variables x → V , which yields

f
(4)
0 (g, z) =

∫ Vg,z

0
dV

ϕ′(V )
g

(
1 − ϕ(V )

g

)
log

(
ϕ(V )

V

)
(2.16)

where Vg,z is the value of V at x = 1, satisfying ϕ(Vg,z) = g for fixed g and z. The
singularities of the planar free energy are due to those of Vg,z as a function of g and z. For
fixed z, the first singularity of f (4)

0 (g, z) is attained at a critical value g = gc(z), where the
value Vc(z) ≡ Vgc(z),z is such that ϕ′(Vc(z)) = 0. In the vicinity of this point, (2.14) reduces
to gc(z) − g ∼ (Vc(z) − Vg,z)

2, which in turn yields a generic square root singularity for
Vg,z in (2.15). To get the corresponding singularity of the free energy, we note that, taking
successive derivatives of (2.16) with respect to g and using ϕ(Vg,z) = g, we simply get the
general formula

d2

dg2

(
g3 d

dg
f
(4)

0 (g, z)

)
= 1 − g

Vg,z

dVg,z

dg
. (2.17)

The square root singularity of Vg,z immediately translates into a string susceptibility exponent
γ , defined by f (4)

0 (g, z)|sing ∼ (gc(z)− g)2−γ , with value γ = −1/2. The critical value gc(z)
also corresponds to the maximum value of g for which the series expansion of the free energy
converges.

Writing gc(z) = ϕ(Vc(z)) and 0 = ϕ′(Vc(z)) yields parametric equations for the critical
line gc(z), in terms, say, of the parameter u = 3zVc(z)

2:

z = 12u(1 + 3u)2

(1 − 3u)8
gc(z) = (1 − 3u)4(1 + 10u− 15u2)

12(1 + 3u)2
. (2.18)

This line is plotted in figure 2. The solid curve corresponds to the true critical values of
g = gc(z), corresponding to a first maximum of ϕ(V ), while the dashed line corresponds to a
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-

Lee-Yang

0

V

V

ϕϕ
ϕ

V

g

Figure 2. Critical line gc(z) for the hard particle model on arbitrary random lattices, as obtained
by setting ϕ′(V ) = 0. The solid line represents the true critical values of g = gc(z) corresponding
to the maximum of ϕ first attained by the change of variable x → V , while the dashed line
corresponds to a further minimum as displayed in the top right plot of the figure. These extrema
merge at the Lee–Yang critical point z− where ϕ′′(V ) = 0 (top centre plot) and disappear from the
real plane (by becoming complex) for z < z− (top left plot).

further minimum of ϕ(V ) which is never attained by the above change of variables. The solid
line stops at a finite negative value of z below which gc(z) becomes complex. We note that
for z = 0 (u = 0) we recover the critical value gc = 1/12 for pure arbitrary tetravalent graphs
[14]. The solid and dashed lines merge into a cusp at a higher order critical point satisfying in
addition ϕ′′(V ) = 0, as it corresponds to the coalescence of the maximum and the minimum
of ϕ (see figure 2). This point corresponds to the values

z− = − 25
8192 (11

√
5 + 25) = −0.151 . . .

g− = gc(z−) = 64
45 (13

√
5 − 29) = 0.0979 . . .

V− = Vc(z−) = 32
75 (7

√
5 − 15) = 0.278 . . . .

(2.19)

At this point, the above scaling argument now becomes g− −g ∼ (V− −V )3, hence translates
directly into a string susceptibility exponent γ = −1/3. As the critical activity z− is negative,
we identify this higher critical point with the unique non-unitary theory with γ = −1/3,
namely the Lee–Yang edge singularity with c(2, 5) = −22/5, coupled to 2D quantum gravity
(see appendix A). This identification may be corroborated in two different ways. On one hand,
one may compute the thermal exponent α which measures the singularity of the free energy
at the critical point as a function of z, and compare it to the predicted value α = 1/2 for the
Lee–Yang edge singularity coupled to 2D quantum gravity, as re-derived in appendix A below.
Writing the thermodynamic free energy per site as f (4)(z) = − limA→∞ 1

A
logZA(z) where

ZA(z) is the partition function for planar graphs of fixed number of vertices (area) A, we read
α from the singular part f (4)(z)|sing ∼ (z − z−)2−α . Using f (4)(z) = log gc(z), α may be
obtained by computing the singular part of gc(z). Expanding equation (2.18) in powers of
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u− u−, we find that gc(z)− g− = a(u− u−)2 + b(u− u−)3 + · · · and z− z− = a′(u− u−)2 +
b′(u − u−)3 + · · · with u− = 3z−V 2

−, and which, upon inversion, yields gc(z) − g− =
a′′(z − z−) + b′′(z− z−)

3
2 + · · · with a non-vanishing value of b′′. Hence we get 2 − α = 3/2

as expected. On the other hand, one may also derive the so-called double scaling limit of
the model at the critical point and write a differential equation for the renormalized string
susceptibility, easily identified with that of the Lee–Yang edge singularity coupled to 2D
quantum gravity. This derivation is presented in appendix B below.

Note that for z < z−, the gravitational critical value of g becomes complex with
gc(z) = ρeiθ , but it still governs the large area behaviour of the above partition function
ZA(z) which now oscillates typically as

ZA(z) ∼ ρ−A cos(Aθ) (2.20)

which allows the thermodynamic free energy to be identified as log ρ.
In conclusion, when comparing with the regular lattice results, we see that the naive

gravitational version of the exclusion model fails to reproduce the crystallization transition,
and leaves us only with the ‘non-physical’ Lee–Yang edge singularity. As shown in appendix
C, the case of trivalent graphs instead of tetravalent is exactly solvable as well and displays the
same structure. The absence of a crystalline ordered phase should not come as a surprise, as
the partition function involves a sum over graphs that are not generically bicolourable, hence
do not allow for a canonical crystalline order, where half of the vertices are preferentially
occupied. To emphasize the role played by bicolourability for exclusion models, we note that
for large z (u → 1/3 in equation (2.18)) the quantity

√
zgc(z) tends to 2/9, which is precisely

the critical value of g in a model of pure bicolourable tetravalent graphs1. This clearly shows
that in this limit the selected configurations are half-occupied vertex-bicolourable graphs.

To recover a crystallization transition at finite z, we shall consider in the next section the
coupling of exclusion models to Eulerian gravity.

2.3. Nearest neighbour exclusion models on vertex-bicolourable random lattices

In this section, we consider a restricted gravitational version of the nearest neighbour exclusion
model, in which we explicitly sum only over the so-called random Eulerian graphs, simply
defined as vertex-bicolourable (or bipartite) graphs. It turns out that the case of trivalent
Eulerian graphs is technically simpler than that of tetravalent ones, yet it displays the same
qualitative physical behaviour. Therefore we will now concentrate on the trivalent case and
leave the tetravalent one to appendix E.

The configurations of the nearest neighbour exclusion model on Eulerian trivalent graphs
are again generated by a matrix model replacing (2.1). We now need a total of four matrices,
as the vertices must be bicoloured and empty or occupied. More precisely, we use a matrix
A1 (resp. A4) for empty black (resp. white) vertices and a matrix A2 (resp. A3) for occupied
white (resp. black) vertices. The resulting matrix model reads

Z
(3)
N (g, z) =

∫
dA1 dA2 dA3 dA4 e−NTrV (A1,A2,A3,A4)

V (A1, A2, A3, A4) = A1A2 − A2A3 + A3A4 − g

(
A3

1

3
+
A3

4

3

)
− gz

(
A3

2

3
+
A3

3

3

)
.

(2.21)

The quadratic form in V (A1, A2, A3, A4) has been engineered so as to reproduce the correct
propagators, namely that only black and white vertices are connected in the Feynman diagrams

1 This critical value was computed in [15] in the context of a particular O(n = 1) gravitational model.
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(〈AiAj 〉 = 0 if i and j have the same parity) and that two occupied neighbouring vertices
exclude one-another (〈A2A3〉 = 0).

Due to the chain-like interaction between the matrices, this model turns out to be solvable
by means of bi-orthogonal polynomials. In addition the symmetry Ai ↔ A5−i implies that
the two sets of polynomials are identical. We therefore introduce the monic polynomials pn,
orthogonal with respect to the appropriate symmetric scalar product, namely

(pn, pm) =
∫

dx1 dx2 dx3 dx4 e−NV (x1,x2,x3,x4)pn(x1)pm(x4) = hnδn,m. (2.22)

As before, we introduce operators Qi of multiplication by xi, i = 1, 2, 3, 4, but this time
all acting on pn(x1). The symmetry Ai ↔ A5−i immediately implies that Q3 = Q

†
2 and

Q4 = Q
†
1. We also introduce the operator P1 acting on pn(x1) as d/dx1. These operators

satisfy the system

P1

N
= Q2 − gQ2

1 Q1 = Q
†
2 + gzQ2

2 (2.23)

obtained by integrating by parts.
To write explicitly the action of Q1 and Q2 on the pn, let us first note that the potential V

satisfies the symmetry relation

V
(
ωx1, ω

2x2, ωx3, ω
2x4

) = V (x1, x2, x3, x4) ω = e2iπ/3. (2.24)

This translates into the symmetry relation for the monic orthogonal polynomials

ω2npn(ωx) = pn(x). (2.25)

Now from (2.23) it is easy to show that Q1 and Q2 have finite range, and more precisely,
thanks to the symmetry relation (2.25)

Q1 = σ + σ−2r(1) + σ−5r(2) + σ−8r(3)

Q2 = σ 2s(0) + σ−1s(1) + σ−4s(2)
(2.26)

where σ is the shift operator acting on the p as σpn = pn+1 and the operators r(i), s(i) are
diagonal. Introducing as before the diagonal operator v with entries vn = hn/hn−1, we have
σ † = σ−1v, and therefore

Q
†
2 = s(0)(σ−1v)2 + s(1)v−1σ + s(2)(v−1σ)4. (2.27)

Expanding the relations (2.23) order by order in σ , we finally arrive at

s(0) = g

s(2) = −g3zσ 4(σ−1v)4

v = s(1) + g2zv
(
σs(1)σ−1 + σ−1s(1)σ

)
r(1) = gσvσ−1v + gzσs(1)σ−1s(1) + g2z

(
s(2) + σ−2s(2)σ 2)

ν

N
= s(1) − g

(
r(1) + σ−1r(1)σ

)
(2.28)

where ν is the diagonal operator with entries n.
In the planar limit, we express the system (2.28) in terms of the rescaled limiting functions

S(x) = lim g2zs(1), V (x) = lim g2zv, where x = n/N while n,N → ∞, and also use the
fact that σ → 1. The third line of (2.28) allows us to solve for S = V/(1 + 2V ), so that we
finally get

g2z2x = ϕ(V ) ≡ z
V

(1 + 2V )2
− 2V 2(1 − 2V 2). (2.29)



Exact solutions to critical and tricritical hard objects on bicolourable random lattices 3831

- +

Lee-Yang
g

2

2
( )

g
2

1
( )

g
2

g
2

2
( )

g
2

1
( )

g
2

1
( ) g

2

2
( )

g
2

1
( )

g
2

2
( )

Ising

0

V
ϕ

V

=

ϕ

V

Figure 3. Critical line gc(z) for the hard particle model on vertex bicolourable random lattices,
as obtained by setting ϕ′(V ) = 0. The solid line represents the true critical values of g = gc(z)

corresponding to the maximum of ϕ first attained by the change of variable x → V , while the
dashed line corresponds to a further minimum as displayed in the top plots. The curve terminates
at a Lee–Yang critical point similar to that of figure 2. The maximum and minimum swap
determinations at the critical Ising point z+ where ϕ′′(V ) = 0 (top centre plot).

Writing

ϕ′(V ) = (1 − 2V )(z − 4V (1 + 2V )4)

(1 + 2V )3
= 0 (2.30)

we get two candidates for the critical line, namely V = 1/2 or z = 4V (1 + 2V )4.
These lead respectively to the two possible critical curves g2(z) = ϕ(V )/z2

parametrized by

g2
1(z) = 1

8z
− 1

4z2
z > 0 V = 1/2

g2
2(z) = 1 + 8V + 10V 2

8(1 + 2V )8
with z(V ) = 4V (1 + 2V )4

(2.31)

where the condition z > 0 in the first line simply follows from the positivity requirement for
the norm ratios vn, implying that V and z have the same sign.

These two lines are represented in figure 3. The choice of the correct determination in
(2.31) is best seen by plotting the critical lines in a (V , z) diagram as in figure 4. In this picture,
the correct singularity of the free energy at fixed z is always given by the lowest critical value
of |V | as it is the one attained by the above change of variables. The true critical points of the
free energy are represented by the solid curve in figure 3, and correspond to maxima of ϕ(V ),
while the dashed parts correspond to further minima of ϕ(V ) never attained by the change of
variables as before. Along these lines the string susceptibility exponent is γ = −1/2. We
note that for z = 0, we recover the critical value g2

c = 1/8 for pure bicoloured trivalent graphs
[16, 17]. Also for z → ∞ we get g2(z) = g2

1(z) ∼ 1/(8z) as expected for half-occupied
trivalent bicoloured graphs.
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1 2

1 2
V

+

-

Figure 4. Critical lines in the (V , z) plane as obtained by setting ϕ′(V ) = 0. The correct line
corresponds to the lowest value of |V | and is represented by a solid line. The Lee–Yang critical
point z− is characterized by dz/dV = 0 and corresponds to the merging and annihilation of two
extrema. The Ising critical point z+ corresponds to the crossing of two determinations of V (z).

The higher order critical points correspond to the cuspidal singularity at z−, where the
maximum and minimum of ϕ(V )merge and annihilate each other, and to the crossing between
the two curves at z+, where the value of the maximum of ϕ hops from g2(z) to g1(z) while its
minimum hops from g1(z) to g2(z). The position of these points is obtained by writing the
extra condition ϕ′′(V ) = 0, with

ϕ′′(V ) =
{

32−z
4 if V = 1/2

4(2V − 1)(1 + 10V ) if z = 4V (1 + 2V )4.
(2.32)

We get the two critical values

(1) V+ = 1
2 z+ = 32 g2

+ = 15

212

(2) V− = − 1
10 z− = −29

55
g2

− = 3.57

220
.

(2.33)

The critical point z− is similar to that of section 2.2 and corresponds to the Lee–Yang edge
singularity. The crucial outcome of our calculation is the emergence of a crystalline phase
at finite values of z, with a crystallization transition at z+. This critical point turns out to be
in the universality class of the critical Ising model on random graphs. The simplest reason
for these identifications is that both above critical points have string susceptibility exponent
γ = −1/3 by construction, and that only two CFTs are candidates to describe this2, the
Lee–Yang edge singularity with c(2, 5) = −22/5 which is non-unitary as expected for a
negative value z = z−, and the critical Ising model with c(3, 4) = 1/2 which is a unitary
theory, as expected for a positive critical activity z+. To further confirm the identification of the
critical Ising universality class, one can compute the thermal exponentα for the crystallization
transition. It is easy to see from the above formulae that the transition from the curve g1(z) to
g2(z) is continuous at z+, with continuous first and second derivatives, and with a discontinuity
of the third one. This gives a thermal exponent α = −1, as expected for the critical Ising
model coupled 2D quantum gravity (see appendix A). We have also derived the differential
equations for the string susceptibility for both cases in the corresponding double scaling limits,
and identified them with the known results for the Lee–Yang and Ising critical models coupled
to 2D quantum gravity. The details of these calculations are given in appendix D.

2 Indeed for a CFT with central charge c(p, q) = 1 − 6(p − q)2/(pq), we have γ = −2/(p + q − 1), hence here
p + q = 7, and (p, q) = (2, 5), (3, 4) only.
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3. Two-particle exclusion models on regular and random lattices

In this section, we extend our analysis of exclusion models on bicolourable lattices to
incorporate the physics of higher order critical points. More precisely, in the previous section
we have reproduced the universality class of the critical Ising model within the context of
exclusion models on bicolourable random graphs. The crucial feature leading to the Ising
symmetry is the existence of two degenerate symmetric crystalline ground states playing the
role of the two (up and down) ferromagnetic ground states.

We now wish to construct in the language of particle exclusion a model reproducing the
physics of the tricritical Ising model. In the framework of spin systems, the latter is found for
instance in the phase diagram of a dilute Ising model, with spins σ = 0,±1 [18], where the
spins σ = 0 play the role of annealed non-magnetic vacancies. The existence of a tricritical
point is associated with that of three non-symmetric ground states of constant spin: the two
ground states σ = +1 and σ = −1 play symmetric roles, but σ = 0 is on a different footing.
The Ising second order phase transition in the absence of vacancies extends into a line of
second order transition points for low enough activity per vacancy. On the other hand, at
low enough temperature, a first order transition line separates a ferromagnetic phase at low
activity per vacancy from a paramagnetic phase at large activity per vacancy. Both lines merge
at a tricritical point whose behaviour defines the tricritical Ising universality class (CFT with
c(4, 5) = 7/10). (For a general review on tricritical points in the context of spin systems or
lattice gases, see [19].)

In the next section, we show how to realize a similar behaviour within the framework of
hard objects, by use of a two-particle nearest neighbour exclusion model. We first describe
its expected phase diagram on a regular bicolourable lattice. Here again, the bicolourability
of the underlying lattice is crucial for the existence of an ordered crystalline phase. We then
derive an exact solution of the same model on bicolourable random lattices and recover the
expected phase diagram, with in particular a tricritical point coupled to 2D quantum gravity.

3.1. Two-particle nearest neighbour exclusion models on the square and honeycomb lattices

In its simplest formulation, the two-particle exclusion model we wish to study is defined
by putting particles on the vertices of a regular bicolourable lattice (typically square or
honeycomb), with the exclusion rule that a total of at most two particles may occupy the two
vertices adjacent to any edge. In particular, we allow for two particles to occupy the same
vertex, in which case its nearest neighbours must be vacant, while singly occupied vertices
may be nearest neighbours. We assign a weight z1 for singly occupied vertices and a weight
z2 for doubly occupied ones, with typically u = z2/z

2
1 measuring the attractive (u > 1)

or repulsive (u < 1) interaction between particles on the same vertex. As in the one-particle
models of section 2, we may represent pictorially the exclusion constraint in terms of non-
overlapping hard objects on the corresponding lattices. As shown in figure 5, for the square
lattice, doubly occupied sites may be represented as the usual hard squares, which exclude their
four neighbours, while singly occupied sites are represented by a new type of square, which
is half the size and may thus occupy two neighbouring sites. Similarly, for the honeycomb
lattice, we represent doubly and singly occupied vertices respectively by hard hexagons and
triangles that are half the size.

In both cases, we have three crystalline ground states corresponding to a maximal covering
of the lattice: two of them are symmetric and use only the larger tiles which occupy one of
the two sublattices of the bipartite lattice, the third one is obtained by tiling the lattice with
the smaller objects. The phase diagram of the model is best represented in the variables
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(a) (b)

Figure 5. Sample configurations of the two-particle exclusion model on the honeycomb (a) and
square (b) lattices. The black dots represent singly occupied vertices while the circled black dots
represent doubly occupied vertices. The two-particle exclusion constraint that an edge be shared
by at most two particles may be translated into a non-overlapping constraint for hard tiles, either
hexagons for double occupancy and triangles for single occupancy (a) or big tilted squares for
double occupancy and small squares for single occupancy (b).

2

1

1
2

=
2

1

1
+

u

1

0

1st order

2nd order

tricritical point

M=0

M=0

Figure 6. Expected phase diagram in the (1/z2, u
−1 = z2

1/z2) plane for positive activities. The
ordered phase M �= 0 corresponds to a crystallization of the doubly occupied vertices on one of
the two mutually excluding sub-lattices. This phase is separated from the fluid phase M = 0 by a
second order critical line for small enough u−1 and by a first order transition line for small enough
1/z2. Both lines are expected to meet at a tricritical point. The three natural ground states in the
problem are recovered along the axis 1/z2 = 0: for u−1 < 1 the two maximally filled doubly
occupied configurations dominate (tiling with the bigger tiles) while at u−1 > 1, the full occupation
by single particles (tiling with smaller tiles) dominates. The latter ground state degenerates into a
disordered fluid phase as soon as 1/z2 > 0.

(1/z2, u
−1 = z2

1/z2) (see figure 6). On the axis u−1 = 0 (i.e. z1 = 0), we recover the
one-particle exclusion models of section 2 with z = z2, and in particular a crystallization point
at z2 = z+. For fixed small enough u−1, we expect a similar second order transition at some
z2 = z+(u). The critical curve z2 = z+(u) separates the liquid phase from the crystal phase,
the latter being characterized by the non-vanishing of the order parameter M = ρ

(2)
B − ρ

(2)
W

expressing the difference of densities of doubly occupied sites of either colour. On the other
hand, on the axis (1/z2) = 0, i.e. z2 → ∞ and z1 → ∞, with u−1 = z2

1/z2 fixed, we have
a competition between the three ground states of maximal occupation. The two symmetric
ground states made of larger tiles have free energy per site (log z2)/2, while the other ground
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Figure 7. The non-vanishing propagators corresponding to the six-matrix model generating
the configurations of the two-particle exclusion model on vertex bicolourable random lattices.
Identifying respectively A1, A3, A5 with empty, singly occupied and doubly occupied black
vertices on one hand and A6, A4, A2 with empty, singly occupied and doubly occupied white
vertices, the selected propagators enforce both the bicolouring constraint (black vertices are
connected to white vertices only and conversely) and the exclusion constraint (at most two particles
may share the same edge).

state made of smaller tiles has free energy log z1. This leads to a first order transition at
u = 1, with the same order parameter M = ±1 for u > 1 and M = 0 for u < 1. We expect
this transition point to extend into a first order transition curve for small enough (1/z2). By
analogy with the tricritical Ising model phase diagram, we expect the two curves to meet at a
tricritical point with c(4, 5) = 7/10.

These models do not seem to be simply solvable by integrable techniques, and the above
phase diagram is somewhat conjectural. However, in the following section we shall present an
exact solution of the random bicolourable lattice version of the two-particle exclusion model,
and show that it displays precisely the physical picture described above.

3.2. Two-particle exclusion model on vertex-bicolourable random lattices

We start with the matrix model

ZN(g, z1, z2) =
∫ 6∏

i=1

dAi e−NTrV (A1,A2,A3,A4,A5,A6)

V (A1, A2, A3, A4, A5, A6) = A1A2 − A2A3 + A3A4 − A4A5 + A5A6 − g

(
A3

1

3
+
A3

6

3

)

− gz2

(
A3

2

3
+
A3

5

3

)
− gz1

(
A3

3

3
+
A3

4

3

)
(3.1)

where as for section 2.3, the N × N Hermitian matrices Ai with odd (resp. even) index
correspond to black (resp. white) vertices, which can be empty (A1, A6), singly occupied
(A3, A4) or doubly occupied (A5, A2). It is easy to check that the inverse of the
quadratic form in V generates the expected non-vanishing propagators 〈A1A2〉, 〈A1A4〉,
〈A1A6〉, 〈A5A6〉, 〈A3A6〉, 〈A3A4〉 (see figure 7). Remarkably enough, the matrix interaction
in V is simply chain-like, allowing for a solution using bi-orthogonal polynomials.

As before, the symmetry Ai ↔ A7−i of V (i = 1, 2, 3) ensures that the left and right
polynomials are identical, hence we define the monic orthogonal polynomials pn with respect
to the appropriate symmetric scalar product, namely

(pn, pm) ≡
∫ 6∏

i=1

dxi e−NV (x1,x2,x3,x4,x5,x6)pn(x1)pm(x6) = hnδn,m. (3.2)
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Introducing again the operators of multiplication by eigenvaluesQ1,Q2,Q3,Q4 = Q
†
3,Q5 =

Q
†
2,Q6 = Q

†
1 and the operatorP1 of derivation with respect to eigenvalues of A1 (all regarded

as acting on pn(x1)), we find the master equations

P1

N
= Q2 − gQ2

1

0 = Q1 − Q3 − gz2Q
2
2 (3.3)

0 = −Q2 + Q
†
3 − gz1Q

2
3

which determine the h completely.
As a direct consequence of (3.3), the Qi have a finite expansion in powers of the shift

operator σ (σpn = pn+1). The symmetry relation

V
(
ωx1, ω

2x2, ωx3, ω
2x4, ωx5, ω

2x6
) = V (x1, x2, x3, x4, x5, x6) ω = e2iπ/3 (3.4)

analogous to the case of hard objects on bicolourable trivalent graphs, ensures that the relation
(2.25) still holds for the orthogonal polynomials at hand. Then, using relations (3.3) and
σ † = σ−1v, where v is still defined as the diagonal operator with entries vn = hn/hn−1, we
find the expansions

Q1 = σ +
11∑
k=1

σ−3k+1s(k)

Q2 = gσ 2 +
6∑

k=1

σ−3k+2t (k) (3.5)

Q3 = −σ 4g3z2 + σu(1) + σ−2u(2) + σ−5u(3) + σ−8u(4).

where the s(k), t(k) and u(k) are diagonal operators in the pn basis. For simplicity we shall from
now on go directly to the planar limit n,N → ∞ as before with x = n/N fixed, in which
the operators s(k), t(k) and u(k) become functions of x, while σ now plays the role of a dummy
scalar expansion parameter. The last two lines of (3.3) allow the s(k) and t (k) to be clearly
expressed in terms of the u(k). Writing moreover the relation Q2 = Q

†
3 − gz1Q

2
3 at orders

8, 5, 2 in σ we may express u(2), u(3), u(4) as

u(2) =
gv2

(
1 + z1

(
u(1)

)2
)

1 + 2g4z1z2v2

u(3) = −2g4z1z2u
(1)v5 (3.6)

u(4) = g7z1z
2
2v

8.

We finally get two equations determining u(1) and v implicitly in terms of x, by writing
Q1 = Q3 + gz2Q

2
2 at order 1 in σ and P1/N = Q2 − gQ2

1 at order −1 in σ . Upon defining
the rescaled quantities

α = z1

z2
V = g2z2v U = z2

(
u(1)

)2
(3.7)

we end up with the two equations

g2z2
2x = ϕ(V,U) ≡ 4V 4(1 − 2α2V 4)− 2V 2 (1 + αU)2

(1 + 2αV 2)2
+ V (1 − 20α2V 4)U

z2 = ψ(V,U) ≡ U

(
2V (1 − 4α2V 4) +

1 − 2αV 2 − 4Uα2V 2

1 + 2αV 2

)2

. (3.8)
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This system generalizes (2.29) in the sense that we must first solve the second equation for
U(V ) as an implicit function of V (namely z2 = ψ(V,U(V ))) and plug it back into the first
equation to get the relation g2z2

2x = ϕ(V ) ≡ ϕ(V,U(V )), leading to the formula for the
planar free energy through relation (2.15) (upon the substitution g → g2z2 in the denominator
of the log). More precisely, the correct determination of U is dictated by the small x limit in
which v ∼ x, hence V ∼ g2z2x and U → z2.

Before we turn to the general study of the critical lines of the model, it is instructive to
analyse the simple limiting cases discussed in section 3.1, namely u−1 → 0 (z1 → 0) for
which we expect to recover the one-particle model of section 2.3, and (1/z2) → 0 (z1, z2 → ∞
with u = z2/z

2
1 fixed) for which we expect a first order transition.

For z1 → 0, we simply take α = 0 in (3.8) to write the second equation as
U = z2/(1 + 2V )2 while the first equation gives g2z2

2x = VU − 2V 2(1 − 2V )2. We
therefore recover equation (2.29) with z2 → z.

More interestingly, in the other limit, we must let the parameters scale as z1 = ẑ1/ε, z2 =
ẑ2/ε

2, g = ĝε with ε → 0. From (3.7) we deduce the other rescalings α = α̂ε, V = V̂ and
U = Û/ε2. In this limit, equation (3.8) becomes

ĝ2ẑ2
1x = 1

2 (2ÛV̂ α̂
2)(1 − (2Û V̂ α̂2))

ẑ2 = Û(2V̂ + 1 − 4ÛV̂ 2α̂2)2.
(3.9)

The second line of (3.9) may be recast as

u−1 1

2

√
Û

ẑ2


1 −

√
Û

ẑ2


 = 1

2
(2ÛV̂ α̂2)(1 − (2Û V̂ α̂2)) (3.10)

with u−1 = z2
1/z2 = ẑ2

1/ẑ2 as before. This gives an alternative expression for ϕ̂(V̂ ) ≡ ĝ2ẑ2
1x.

The maxima of ϕ̂(V̂ ) correspond clearly to either 2Û V̂ α̂2 = 1/2 or
√
Û/ẑ2 = 1/2 leading

respectively to the critical values ĝ2
1 = 1/(8ẑ2

1) or ĝ2
2 = u−1/(8ẑ2

1) = 1/(8ẑ2). As before, the
choice of the correct determination is best seen by considering the critical lines in the plane
(V̂ , u−1). Using (3.10) with 2Û V̂ α̂2 = 1/2, we obtain the first curve

u−1 = ẑ2V̂ α̂
2

2
√
ẑ2V̂ α̂2 − 1

. (3.11)

Using (3.10) with now
√
Û/ẑ2 = 1/2, we get the second curve

u−1 = ẑ2V̂ α̂
2 (

2 − ẑ2V̂ α̂
2) . (3.12)

The curves (3.11) and (3.12) are plotted in figure 8. The solid portions correspond to the
smallest values of V̂ for fixed u−1 which define the location of the relevant maxima of ϕ̂(V̂ )
attained by the change of variables x → V̂ . The transition between the two curves takes place
at u = 1 where ĝ2 changes expression from ĝ2

1 to ĝ2
2 (see figure 9). This is clearly a first order

transition as the slope of ĝ2(u) has a discontinuity at u = 1. Note also that ϕ̂′′(V̂ ) is non-zero
at the transition point, therefore we have γ = −1/2 as in the case of pure gravity.

Let us now turn to the general analysis of the complete phase diagram as obtained
from equation (3.8). As before, we first look for critical lines characterized by ϕ′(V ) =
0 = ∂V ϕ − ∂Uϕ(∂V ψ/∂Uψ). Using the explicit expressions for ϕ(V,U) and ψ(V,U),
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Figure 8. Critical lines in the (Ṽ ≡ ẑ2V̂ α̂
2, u−1) plane corresponding to ϕ̂′(V̂ ) = 0. The correct

line corresponds to the lowest value of Ṽ and is represented by a solid line. The first order transition
point u−1 = 1 is characterized by the contact between the two determinations of u−1 at which ĝ2

jumps from 1/(8ẑ2) to 1/(8ẑ2
1).
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Figure 9. Critical line in the (u−1, ĝ2ẑ2
1) plane for the limiting case z1, z2 → ∞, u−1 = z2

1/z2

fixed. The behaviour of ϕ̂(V̂ ) below, at and above the transition is displayed in the small plots.
The slope of ĝ2 ẑ2

1 is discontinuous at the first order transition point u−1 = 1.

we immediately get two possible conditions:

0 = (1 − 2αV 2)2(1 − 2V (1 + 2αV 2)2) + 4Uα2V 2(1 + 6αV 2)

0 = 4V (1 + 2V (1 + 2αV 2)2)2 − U(1 − 8αV (1 − V − 15αV 3 − 52α2V 5 − 50α3V 7))

+ 4U 2α2V (3.13)

which leads to the three determinations: U = U0 solution of the first line; U = U± conjugate
solutions of the second line.

When substituted into z2 = ψ(V,U), this gives three branches in the plane (V , z2)

for fixed α. Let us now restrict ourselves to z1, z2 > 0, hence α > 0. For small enough
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Figure 10. Critical lines in the (V , z2) plane for z2 > 0 at some fixed (small enough) value of
α = z1/z2, as obtained by setting ϕ′(V ) = 0. The solid lines correspond to the correct branches
given by the smallest values of V . They correspond successively to the solutions U−, U0 and U+

of equation (3.13). A continuous transition point occurs at the crossing point z2 = z
(c)
2 of the

two lowest branches, with a situation analogous to that found in figure 4 at the point z = z+.
A discontinuous transition point occurs at the contact point z2 = z

(d)
2 between the two upper

branches, with a situation analogous to that of figure 8 at the point u−1 = 1.

positive values of α the branches in the (V , z2) plane take the generic form displayed in
figure 10. As before, the correct solution corresponds to the smallest value of V for fixed z2,
represented by solid lines in figure 10. We clearly identify two transitions at values z(d)2 and
z
(c)

2 . Comparing the qualitative behaviour of the curves in the vicinity of the transition points
with the behaviour obtained so far in the two above limiting cases, we can identify z

(d)

2 with
a first order discontinuous transition point and z(c)2 with a continuous (critical Ising) transition
point.

The transition points correspond as illustrated in figure 10 to the coincidence of two
branches. We can therefore obtain their location by expressing that U0 = U+ or U0 = U−,
which is done explicitly by writing that the solution U0 of the first line of (3.13) also satisfies
the second line. We get the two possible conditions:

0 = 1 − V (1 − 2V 2α − 20(V 2α)2 − 24(V 2α)3)

0 = 1 − 20V 2α + 100(V 2α)2 − 2V (1 − 16V 2α − 104(V 2α)2 − 448(V 2α)3 + 400(V 2α)4).

(3.14)

Introducing the variable W = 2V 2α, we can express all the relevant quantities as rational
fractions of W . For the first line of (3.14) we end up with

1

z2
= W 2(1 + W)6(1 − 3W)5

4(1 − W)6

1

u
= (1 − W)6(1 + W)2

1 − 3W
. (3.15)

For the second line of (3.14) we get

1

z2
= (1 − 8W − 26W 2 − 56W 3 + 25W 4)5

32(1 − W)6(1 − 5W)4(1 − 8W − 25W 2)2

1

u
= 128W 2(1 − W)6(1 − 8W − 25W 2)2

(1 − 5W)4(1 − 8W − 26W 2 − 56W 3 + 25W 4)
.

(3.16)
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Figure 11. The phase diagram of the two-particle exclusion model on random vertex bicolourable
planar lattices in the (1/z2, u

−1) plane for z2 > 0, as obtained from the exact solution of the
six-matrix model (3.1). This phase diagram agrees with that of figure 6 with an Ising-like critical
(solid) line meeting a first order (dashed) one at a tricritical Ising point (t). We have indicated
the relevant branches of U solving equation (3.13), namely U0 in the ordered phase, and U± in
the fluid one. We have also indicated a typical constant α = z1/z2 hyperbola along which we
encounter successively the two continuous and discontinuous transitions of figure 10.

It is easy to check that the points of the second curve (3.16) correspond to crossings of
branches such as that happening at z(c)2 in figure 10. The situation around these points is
totally analogous to that described on figure 3 at the Ising transition point, with in particular
ϕ′′(V ) = 0, henceforth γ = −1/3. We identify this curve with a line of continuous critical
Ising transition points (CFT with c = 1/2 coupled to 2D quantum gravity).

The first curve (3.15) on the other hand corresponds to a contact of branches such as that
encountered at z(d)2 . The situation around this point is now similar to that found in figure 9 at
the first order transition point. On this line we have ϕ′′(V ) �= 0, hence γ = −1/2 as in the
case of pure gravity (CFT with c = 0 coupled to 2D quantum gravity). However, the critical
parameter g2

c has a discontinuity in its slope across this line, hence so does the free energy.
We thus identify this curve with a line of first order transition points.

These results are summarized in figure 11where the first order transition line is represented
by a dashed line and the continuous one by a solid line. These two lines meet at a tricritical
point with

W(t) =
√

41 − 6

5
1

z
(t)

2

= 15 633 086 927 − 2441 464 587
√

41

80 000 000
= 0.001 073 19 . . . (3.17)

1

u(t)
= 32(564 779 − 87 849

√
41)

78 125
= 0.930 177 . . . .

Note that figure 10 corresponds to a typical small enough constant α section (hyperbola in
the (1/z2, u

−1) plane) such as that represented in dotted line on figure 11 which crosses the
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two transition lines successively. The ordered phase lies below the transition lines and is
described by the solution U0 of the first line of (3.13) while the disordered phase lying above
the transition curves corresponds to U± solutions of the second line of (3.13).

The above phase diagram gives an explicit realization of that described qualitatively in
section 3.1. To complete our study, let us now show that the tricritical point (3.17) displays the
expected behaviour for a tricritical Ising transition point (CFT with c(4, 5) = 7/10) coupled
to gravity. A first evidence comes from the fact that the string susceptibility exponent at
this point is γ = −1/4 as ϕ′ = ϕ′′ = ϕ′′′ = 0 at this point while ϕ(4) �= 0. Note that the
vanishing of ϕ′′ holds generically for all points of the critical Ising line (3.16), as one readily
checks by direct calculation. The vanishing of ϕ′′′ holds only at the tricritical point, as may
also be checked by a direct calculation. The tricritical Ising CFT is the only unitary CFT
with γ = −1/4 when coupled to gravity3. A second check can be performed by computing
the thermal exponent α. More precisely, one can define two thermal exponents pertaining
to two thermal operators with conformal dimensions h33 = 1/10 and h32 = 3/5, and the
corresponding dressed dimensions when coupled to gravity =33 = 1/4 and =32 = 3/4. As
explained in appendix A, the most relevant one (�33) governs the generic approach to the
critical point through f ∼ (z2 − z

(t)

2 )2−α with α = (1 − 2=33)/(1 − =33) = 2/3, while the
other operator (�32) governs the fine-tuned approach along a line tangent to the critical curves
(3.15) and (3.16), with a behaviour f ∼ (z2 −z

(t)

2 )2−α′
with α′ = (1−2=32)/(1−=32) = −2.

To obtain the value of the first exponent in our model, a simple procedure consists in
first fixing the ratio z1/z2, expanding U for both lines of (3.13) in terms of V − V (t) and
substituting the result into (3.8). We finally get g2

c − (g(t))2 = a(V − V (t))3 + b(V − V (t))4

+ · · · and z2 − z
(t)

2 = a′(V − V (t))3 + b′(V − V (t))4 + · · · which upon inversion leads to
g2
c − (g(t))2 = a′′(z2 − z

(t)
2 ) + b′′(z2 − z

(t)
2 )4/3 with values of a′′ and b′′ �= 0 independent of

the determination of U, hence 2 − α = 4/3 as expected. To get the second exponent, we may
approach the tricritical point by travelling along the transition lines (3.15) and (3.16). For the
first transition line we have

g2
c = W 2(1 + W)4(1 − 3W)6(1 − 2W + 3W 2 + 20W 3 + 3W 4 − 50W 5 − 35W 6)

32(1 − W)12
. (3.18)

For the second transition line we have

g2
c = 15(2 − 12W − 41W 2 + 54W 3 − 19W 4)(1 − 8W − 26W 2 − 56W 3 + 25W 4)6

8192(1 − W)12(1 − 5W)2(1 − 8W − 25W 2)4
. (3.19)

Using the corresponding parametric values of z2 (3.15) and (3.16), respectively, we easily
check that the first three derivatives of g2

c with respect to z2 match at the critical point
W = W(t), while the fourth one is different. This discontinuity corresponds to 2 − α′ = 4,
hence α′ = −2.

For completeness let us finally discuss the case z1 > 0 and z2 < 0 (u−1 < 0). Looking
again for the critical lines with ϕ′ = 0, the relevant branch for U yielding the physical
determination of ϕ is given by the second line of (3.13), i.e. U = U−, say. Once substituted
back into the second line of (3.8), this gives a critical line in the (V , z2) plane, such as that
plotted in figure 12(a) (for α = z1/z2 small enough). We recover the Lee–Yang singularity
point at some z−

2 (u), characterized by ϕ′′(V ) = 0 (γ = −1/3) due to the merging of the
maximum of ϕ with its further minimum. Eliminating U, we finally obtain the following

3 γ = −2/(p + q − 1) for a central charge c(p, q) hence p + q = 9 and q − p = 1 by unitarity yield p = 4, q = 5.
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Figure 12. Critical line in the (V , z2) plane for z2 < 0 as obtained by setting ϕ′(V ) = 0 for fixed
(small enough in modulus) α = z1/z2. As usual, the correct portion of the curve corresponds
to the lowest value of |V | and is represented by a solid line. The Lee–Yang critical point z−

2 is
characterized by dz2/dV = 0 and corresponds to the merging and annihilation of the two extrema 1
and 2 in (a) with ϕ′′(V ) = 0. By increasing |α|, we reach the situation (b) where a third extremum

3 merges with them. This defines the tricritical point z(t
′)

2 satisfying in addition ϕ′′′(V ) = 0.

parametric curve

1

z2
= − (5 + 100W + 326W 2 + 820W 3 − 2275W 4)5

512(1 − 5W)6(1 + 35W)4(1 + 20W + 35W 2)2
(3.20)

1

u
= − 2048W 2(1 − 5W)6(1 + 20W + 35W 2)2

(1 + 35W)4(5 + 100W + 326W 2 + 820W 3 − 2275W 4)

with the parameter W = −αV 2 � 0. In figure 12(a), we note the existence of a further
maximum of ϕ never attained by the change of variables x → V except when these three
extrema merge simultaneously (see figure 12(b)). This point corresponds to a higher order
multicritical point with ϕ′′′ = 0, hence with a string susceptibility exponent γ = −1/4. This
tricritical point corresponds to the values

W(t ′) = 8
√

14 − 21

455
1

z
(t ′)
2

= −172 647 361 044
√

14 + 645 414 154 777

317 007 031 250
= −4.073 73 . . .

1

u(t
′) = −524 288(2401 452

√
14 − 8699 159)

10 274 243 531 825
= −0.014 607 2 . . . .

(3.21)

We thus conclude that the line of Lee–Yang critical points z−
2 (u) ends at this higher critical point

z
(t ′)
2 . We identify this point with the only non-unitary CFT with γ = −2/(p+q − 1) = −1/4,

i.e. c(2, 7) = −68/7, coupled to 2D quantum gravity. A confirmation of this fact may
be obtained by computing the thermal exponents of the theory α and α′ characterizing the
singularity of the free energy (or equivalently of g2

c ) as z2 approaches the tricritical value
z
(t ′)
2 . As in the unitary case, the exponent α governs the generic approach to this point in
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Figure 13. The phase diagram of the two-particle exclusion model on random vertex bicolourable
planar lattices in the (1/z2, u

−1) plane for z2 < 0, as obtained from the exact solution of the
six-matrix model (3.1). A (solid) line of Lee–Yang type critical points terminates at a tricritical
point (t ′)where it meets another first order (dashed) transition line. These two lines form the border
of the region of the phase diagram where an oscillatory behaviour is observed in the canonical
partition function ZA(z1, z2).

the (1/z2, u
−1) plane, while α′ governs the fine-tuned approach along the line of Lee–Yang

singular points. As shown in appendix A, the predicted values are α = 2/3 and α′ = 1/2. As
before, we obtain the first exponent in our model by expanding g2 and z2 along a curve with,
say, z1/z2 = const. We find generically g2

c − (g(t
′))2 = a(V − V (t ′))3 + b(V − V (t ′))4 + · · ·

and z2 − z
(t ′)
2 = a′(V − V (t ′))3 + b′(V − V (t ′))4 + · · · which upon inversion leads to

g2
c − (g(t

′))2 = a′′(z2 − z
(t ′)
2 ) + b′′(z2 − z

(t ′)
2 )4/3 with b′′ �= 0, which gives 2 − α = 4/3. To

compute the second exponent, we use the parametric equations (3.20) and the corresponding
value of g2

c

g2
c = 15(5 + 100W + 326W 2 + 820W 3−2275W 4)6(2−60W + 151W 2+630W 3 − 2275W 4)

2097 152(1 − 5W)12(1 + 35W)2(1 + 20W + 35W 2)4

(3.22)

and expand g2
c and z2 around the tricritical point W(t ′), with g2

c − (g(t
′))2 = a(W − W(t ′))2 +

b(W−W(t ′))3 + · · · and z2 −z
(t ′)
2 = a′(W −W(t ′))2 +b′(W −W(t ′))3 + · · · which upon inversion

leads to g2
c −(g(t

′))2 = a′′(z2 −z
(t ′)
2 )+b′′(z2 −z

(t ′)
2 ))3/2 with b′′ �= 0, which gives 2−α′ = 3/2.

As discussed at the end of section 2.2, the Lee–Yang critical line separates a small |z2|
region where gc is real from a large |z2| region where it becomes complex and generates
an oscillatory behaviour of the form (2.20) for the canonical partition function ZA(z1, z2)

for planar graphs of fixed area A. This separation between oscillatory and non-oscillatory
behaviour extends beyond the tricritical point (t ′) in the form of a first order transition line as
depicted on figure 13. This line corresponds to a situation where the two complex conjugate
values of g corresponding to the complex conjugate solutions to ϕ′ = 0 cross in modulus
the real value of g corresponding to the real solution to ϕ′ = 0. The transition through this
line is first order in the sense that the thermodynamic free energy has a discontinuous slope
across the line. The line clearly originates at the tricritical point (t ′) where the three values
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of g are real and coincide. More interestingly, it is easy to see that it terminates at the point
(1/z2, u

−1) = (0,−1). Indeed, along the axis 1/z2 = 0, we have to compare the real value
ĝ1 = 1/

√
8ẑ2

1 and the two complex conjugate values ĝ2 = ±i/
√

8|ẑ2|. For u−1 > −1, we have
an oscillatory behaviour of the partition function ẐA(ẑ1, ẑ2) = lim εAZA(z1, z2) ∼ (−8ẑ2)

A/2,
while for u−1 < −1 we simply have a non-oscillatory behaviour ẐA(ẑ1, ẑ2) ∼ (2

√
2ẑ1)

A.

4. Conclusion and discussion

In this paper, we have shown how to reach critical and multicritical points in the context
of nearest neighbour exclusion models. We have displayed a number of exact solutions for
various models defined on random planar lattices. The crucial outcome of this analysis is
the importance of the colourability condition of the underlying lattice. Indeed, we have
shown that critical points based on a Z2 symmetry such as the critical Ising and tricritical
Ising models are reproduced for exclusion models under the condition that the lattice itself
be vertex-bicolourable. In view of understanding the physics of the corresponding models on
regular lattices, the outcome of the random lattice solutions is twofold: first it sorts out which
features of the lattice itself take a relevant part in the models’ critical behaviour; secondly it
allows for an exact solution in the planar limit that clearly identifies the critical universality
classes for regular lattice models (such as the celebrated hard square model) which are still
unsolved directly. More precisely, this study allows it to be inferred that the bipartite nature of
the square and honeycomb lattices indeed translates into a critical Ising-like universality class
for their crystallization transition point.

We have shown how to extend the definition of hard particle models to reach higher order
critical points, by introducing a two-particle exclusion model in which each site may be empty,
singly or doubly occupied with an exclusion constraint that a total of at most two particles
may share the same edge. A straightforward generalization consists in having a k-particle
exclusion model, where sites can be occupied by 0, 1, 2, . . . up to k particles, with a weight
zi for an occupancy by i particles, and with the exclusion constraint that a total of at most k
particles may share the same edge. When defined on a regular lattice, the exclusion constraint
is easily turned into an non-overlapping constraint for appropriate tiles of various sizes. When
defined on a random vertex-bicolourable lattice, these models are amenable to a (2k + 2)
matrix integral, with potential

V (A1, A2, . . . , A2k+2) =
2k+1∑
i=1

(−1)i+1AiAi+1 − g

3

k∑
i=0

zi
(
A3

2i+1 + A3
2(k−i)+2

)
(4.1)

for trivalent graphs, with a weight g per vertex (and z0 = 1). Remarkably enough, the
exclusion rule translates into a chain-like quadratic interaction between the matrices, which
makes the models exactly solvable by means of standard orthogonal polynomial techniques.
With the model (4.1), we expect to be able to reach multicritical points governed by CFTs
with central charges c( p, q) with p + q = 2k + 3, by appropriately fine-tuning the zi , in order
to reach the highest possible critical string susceptibility exponent γ = −1/(k + 2). We also
expect the situation to be identical on vertex-bicolourable regular lattices.

One may also address the question of the behaviour of the same particle exclusion models
on lattices with other colourability properties. From the exact solution of the hard hexagon
model on the triangular (hence vertex-tricolourable) lattice, it is natural to expect that the
above exclusion models, when defined on vertex-tricolourable (fixed or random) lattices, give
rise to critical and multicritical three-state Potts models. Unfortunately, the corresponding
matrix models are no longer directly solvable by means of orthogonal polynomials.
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More generally, the vertex-k-colourability of the lattice is likely to generate within the
context of exclusion models critical points with Zk symmetry such as the k-state Potts model
or the Zk model of Fateev and Zamolodchikov [20]. We know however that for large enough
k > 4 we lose the continuous transition in the Potts case, while in the other case the central
charge c = 2(k − 1)/(k + 2) > 1 forbids any meaningful coupling to 2D quantum gravity.

Note finally that the above study provides an example of critical phenomena whose
coupling to gravity is sensitive to the type of graphs summed over. While the precise
connectivity (tri- or tetra-valency) of the lattices is unimportant, their Eulerian (bipartite) or
Euclidean (arbitrary) character is relevant. This situation is reminiscent of that of fully-packed
loop models [21, 22].
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Appendix A. String susceptibility and thermal exponents for minimal CFT coupled to
2D quantum gravity

The matrix models in general give a discretized version of matter systems coupled to 2D
quantum gravity, in the form of discrete statistical models defined on random graphs accounting
for the fluctuations of space–time. In the continuum approach to 2D quantum gravity, one
may relate the properties of some critical matter system in fixed geometry (typically a CFT
with central charge c in the plane) to that of the same matter system coupled to 2D quantum
gravity. The precise connection involves the celebrated KPZ formula [23] expressing the
string susceptibility exponent for a unitary CFT of central charge c coupled to 2D quantum
gravity:

γ (c) = c − 1 − √
(1 − c)(25 − c)

12
(A.1)

as well as the dimension = of the gravitational dressing φ of a primary operator of the CFT
with dimension h:

=(h, c) =
√

1 − c + 24h− √
1 − c√

25 − c − √
1 − c

. (A.2)

This dimension measures the singular behaviour of the corresponding two-point correlator as
〈φφ〉 ∼ (µc − µ)2=(h,c)−γ (c), when the cosmological constant µ approaches its critical value
µc. The above formulae simplify drastically when considering minimal CFT with central
charge

c(p, q) = 1 − 6
(p − q)2

pq
(A.3)

with say q � p + 1 and p ∧ q = 1, and operator spectrum

hr,s = (qr − ps)2 − (p − q)2

4pq
(A.4)

with qr − ps > 0, 1 � r � p − 1, 1 � s � q − 1. Equations (A.1) and (A.2) reduce in this
case to

γ (c(p, q)) = 1 − q

p
=r,s ≡ =(hr,s , c(p, q)) = (r − 1)q − (s − 1)p

2p
. (A.5)
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For a unitary theory (q = p + 1), the most relevant operator of the theory is the identity
with h1,1 = 0 and its gravitational dressing known as the ‘puncture operator’ P has =1,1 = 0
as well. This operator measures the area of the random surface, which allows the deviation
µc − µ to be identified with gc − g in the corresponding matrix model, and γ = −1/p to
be interpreted as the exponent governing the singularity of the free energy. In the case of
pure gravity (p = 2, q = 3), we have γ = −1/2, and the only operator is P. In the case of
the critical Ising model (p = 3, q = 4) we have γ = −1/3 and three operators: the puncture
P, the dressed energy operator �2,1 and the dressed spin operator �2,2, with respectively
=1,1 = 0,=2,1 = 2/3 and =2,2 = 1/6. The dressed energy is the thermal operator, with
coupling zc − z ∼ (µc −µ)1−=2,1 = (gc − g)1/3, hence upon inversion we get a singularity of
the free energy of the form given by gc − g ∼ (zc − z)2−α , with α = −1. In the
case of the tricritical Ising model (p = 4, q = 5), we have γ = −1/4 and there are
six operators, among which we distinguish the puncture P and the two thermal operators
�3,3 and �3,2, with respectively =3,3 = 1/4 and =3,2 = 3/4. The generic thermal
perturbation of the model is governed by the most relevant operator �3,3 with coupling
z2 − z

(t)

2 ∼ (µc − µ)1−=3,3 = (gc − g)3/4, yielding the singularity of the free energy
gc − g ∼ (z2 − z

(t)

2 )2−α with α = 2/3. By fine-tuning the parameters one may approach
the tricritical point on a line along which the contribution of �3,3 is cancelled, and therefore
the next most relevant thermal operator �3,2 takes over. This leads analogously to another
thermal exponent α′ with 2 − α′ = 1/(1 − =3,2), hence α′ = −2.

For non-unitary theories with q > p+ 1, the above formulae must be interpreted carefully
to account for the fact that the identity is no longer the most relevant operator. Indeed, the scale
of the deviation from criticality is set instead by the operator of smallest (negative) dimension
h0 = (1 − (p − q)2)/(4pq) (with qr − ps = 1) corresponding to the gravitationally dressed
operator �0 with dimension =0 = (p − q + 1)/(2p). The latter operator has the coupling
(µc − µ)1−=0 which allows to identify the deviation from criticality (gc − g) in the matrix
model as gc − g = (µc − µ)1−=0 . Note that this general relation also holds in the unitary
case q = p + 1, where it reduces to gc − g = µc − µ, as h0 = =0 = 0. The most singular
part of the free energy is due to the presence of �0 and may be obtained by writing that
d2f/dg2|sing ∼ 〈�0�0〉. We can therefore write

〈�0�0〉 ∼ (µc − µ)2=0−γ (c(p,q)) ∼ (gc − g)−γ (A.6)

from which we deduce the corrected string susceptibility exponent γ of the matrix model:

−γ = 2=0 − γ (c(p, q))

1 − =0
= 2

p + q − 1
. (A.7)

To compute the thermal exponent we need to identify the next most relevant thermal operator,
say �1 with dimension =1 with coupling proportional to (µc − µ)1−=1 ∼ (gc − g)1/(2−α),
leading to 2 − α = (1 − =0)/(1 − =1).

For the Lee–Yang edge singularity, we have p = 2, q = 5, and therefore =0 = =1,2 =
−1/2 and γ = −1/3. In this case, the deviation from the critical ‘temperature’ zc − z is
coupled to the next most relevant operator of the theory, which turns out to be the puncture
operator �1 = P with =1 = 0, leading to α = 1 + =0 = 1/2. For the case p = 2, q = 7 of
section 3.2, we have =0 = =1,3 = −1 and γ = −1/4. A generic deviation from criticality
z
(t ′)
2 − z2 is coupled to the operator �1 ≡ �1,2 with =1 = =1,2 = −1/2, hence yields a

thermal exponent α = 2/3. In a fine-tuned approach to the critical point, we may cancel the
contribution of �0, in which case �1 now plays the role of the most relevant operator, with
=′

0 = =1, while the thermal operator becomes P, with =′
1 = 0. We deduce the fine-tuned

thermal exponent α′ = 1 + =′
0 = 1 + =1 = 1/2, identical to that of the Lee–Yang case.
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Appendix B. Hard particles on a random tetravalent lattice: double scaling limit

In the following, we derive the double scaling limit of the model of hard particles on a
random lattice (not necessarily vertex-bicolourable). We show that the renormalized string
susceptibility obeys the Lee–Yang differential equation. We first rewrite the equations (2.11)
and (2.12) in components, namely

n

N
= vn − rn − gz(sn + sn+1 + sn+2 + rn(rn−1 + rn + rn+1)

r̃n = vn(1 + gz(rn−1 + rn + rn+1))

s̃n = gzvnvn−1vn−2

(B.1)

and
n

N
= vn − g(s̃n + s̃n+1 + s̃n+2 + r̃n(r̃n−1 + r̃n + r̃n+1)

rn = gvn(r̃n−1 + r̃n + r̃n+1)

sn = gvnvn−1vn−2.

(B.2)

Introducing the new coefficients

Rn = grn Sn = g2sn R̃n = gr̃n S̃n = g2 s̃n Vn = gṽn (B.3)

we simply get

R̃n = Vn(1 + z(Rn−1 + Rn + Rn+1))

S̃n = zVnVn−1Vn−2

Rn = Vn(R̃n−1 + R̃n + R̃n+1)

Sn = VnVn−1Vn−2

g
n

N
= Vn − RnR̃n

Vn

− zVn(Vn−1Vn−2 + Vn−1Vn+1 + Vn+1Vn+2)

(B.4)

where both first lines of (B.1) and (B.2) turn out to be equivalent to the last line of (B.4). When
N becomes large, all sequences tend to smooth functions of x = n/N , and setting a = 1/N ,
we now make the following scaling ansatz onVn ≡ V (x) = V (1−a2v(x)), for some unknown
function v(x) for which we will derive a differential equation. We must first solve the first
and third lines of (B.4) for r(x) order by order in a, where Rn ≡ R(x) = R(1 − a2r(x)), and
where the values of V,R, z are taken along the critical line (2.18), namely with

z = 12u(1 + 3u)2

(1 − 3u)8
V = (1 − 3u)4

6(1 + 3u)
R = (1 − 3u)7

12(1 + 3u)2
(B.5)

with the result

r(x) = 2v(x)

1 − 3u
+ a2 1 + 9u

3(1 − 3u)2
(v′′(x)− 3v(x)2)− a4

36(1 − 3u)3

(
(1 + 54u + 117u2)v(4)(x)

− 12(1 + 42u + 81u2)v(x)v′′(x)− 288u(1 + 3u)v′(x)2

+ 432u(1 + 3u)v(x)3) + O(a6). (B.6)

We now expand the last line of (B.4) up to order 6 in a, after setting u to its critical value
uc = (2

√
5 − 5)/15, with the final result

gc − gx

gc
= a6

(
v(x)3 − 1

2
v′(x)2 − v(x)v′′(x) +

1

10
v(4)(x)

)
. (B.7)

Upon introducing the renormalized cosmological constant y = (gc − gx)/(a6/7gc) and
appropriately rescaling v(x) → a−12/7v(y), we finally get the standard differential equation
for the renormalized string susceptibility v(y)

y = v(y)3 − 1
2v

′(y)2 − v(y)v′′(y) + 1
10v

(4)(y) (B.8)
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which is easily identified with that of the Lee–Yang edge singularity coupled to 2D quantum
gravity [9].

Appendix C. Hard particles on arbitrary random trivalent lattices

In the following we show that the trivalent lattice version of (2.1) leads to the same qualitative
physics, namely a unique critical point in the universality class of the Lee–Yang edge
singularity coupled to 2D quantum gravity.

We start with the trivalent version of the matrix model (2.1):

Z
(3)
N (g, z) =

∫
dA dB e−NTrV (A,B)

V (A,B) = −1

2
A2 + AB − g

B3

3
− gz

A3

3

(C.1)

where A,B are Hermitian with size N × N , and the measure is normalized so that
Z
(3)
N (0, 0) = 1. Comparing with (2.1), the bi-orthogonal polynomials are no longer even/odd

as V is no longer even. We may still write the trivalent version of (2.7):

P1

N
= Q

†
2 − Q1 − gzQ2

1
P2

N
= Q

†
1 − gQ2

2 (C.2)

and show that the Q have finite range, with

Q1 = σ + r + σ−1s + σ−2t Q2 = τ + r̃ + τ−1s̃ + τ−2 t̃ (C.3)

where σ, τ denote the shift operators acting respectively on the left and right bi-orthogonal
polynomials. In components, the equations (C.2) now read

n

N
= vn − sn − gz(tn + tn+1 + sn(rn−1 + rn)

r̃n = (
rn + gz

(
sn + sn+1 + r2

n

))
s̃n = vn(1 + gz(rn + rn−1))

t̃n = gzvnvn−1

(C.4)

and
n

N
= vn − g(t̃n + t̃ n+1 + s̃n(r̃n + r̃n−1))

rn = g
(
s̃n + s̃n+1 + r̃2

n

)
sn = gvn(r̃n−1 + r̃n))

tn = gvnvn−1.

(C.5)

For large n,N with x = n/N , we get algebraic equations for V,R, S, T (x) respectively limits
of g2zvn, gzrn, g

2zsn, g
3ztn and their tilded counterparts:

g2zx = V − S − 2zT − 2RS R̃ = R(1 + R) + 2zS S̃ = V (1 + 2R)
(C.6)

T̃ = V 2 R = 2S̃ + R̃2/z S = 2V R̃/z T = V 2/z

easily solved in the form of an algebraic equation for R as a function of V

R

(
z − R(1 + R)2

(1 − 4V )3

)
= 2zV

1 − 4V
(C.7)

and a master equation for the dependence on x:

g2z2x ≡ ϕ(V ) = zV (1 − 2V )− 2
VR(1 + R)(1 + 2R)

1 − 4V
. (C.8)
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Writing that ϕ′ = ϕ′′ = 0, and eliminating z and V , we are left with a sixth order equation for
the critical value of R, namely

13 + 266R + 1810R2 + 5920R3 + 10 200R4 + 8748R5 + 2916R6 = 0 (C.9)

only one root of which leads to a positive value of g2z2 through (C.8) at x = 1. This leads to
a unique critical point at

Rc = −0.090 430 . . . Vc = −0.036 173 . . .

zc = −0.165 65 . . . gc =
√
ϕ(Vc)/|zc| = 0.281 05 . . .

(C.10)

with the critical exponent γstr = −1/3, and the critical point is in the (non-unitary) class of
the Yang–Lee edge singularity as in the tetravalent case. It is easy to check that the scaling
ansatz Vn = V (1 − a2v(x)), a = 1/N , still leads, upon solving (C.4), (C.5) order by order in
a, to the same differential equation (B.7) in which g → g2z2.

Appendix D. Hard particles on trivalent bicolourable graphs: double scaling limit

In the following, we complete the identification of both tricritical points (2.33) for the model
(2.21) by deriving the corresponding differential equations for the renormalized version of the
string susceptibility V (x). To derive the double-scaling limit of the matrix model (2.21), let
us first write in components the complete equations (2.28):

s(0)n = g

s(2)n = −g3zvnvn−1vn−2vn−3

vn = s(1)n + g2zvn
(
s
(1)
n−1 + s

(1)
n+1

)
r(1)n = gvn−1vn + g2z

(
s(2)n + s

(2)
n+2

)
+ gzs(1)n s

(1)
n−1

n

N
= s(1)n − g

(
r(1)n + r

(1)
n+1

)
.

(D.1)

Setting Vn = g2zvn, Sn = g2zs(1)n , we finally get

0 = Sn − Vn(1 − Sn−1 − Sn+1)

g2z2 n

N
= zSn(1 − Sn−1 − Sn+1) − Vn(Vn−1 + Vn+1) + Vn−1VnVn+1(Vn+2 + Vn−2) (D.2)

+ Vn(Vn−1Vn−2Vn−3 + Vn+1Vn+2Vn+3).

We make the following scaling ansatz V (x) = V (1 − a2v(x)), a = 1/N a small parameter.
We first solve the equation Vn(1 − Sn−1 − Sn+1) = Sn order by order in a, with the result

S(x) = S(1 − a2s(x))

s(x) = v(x)

1 + 2V
− a2 V

(1 + 2V )2
v′′(x)− a2 2V

(1 + 2V )2
v(x)2 − a4

12

V (1 − 10V )

(1 + 2V )3
v(4)(x)

(D.3)

+ a4 4V 2

(1 + 2V )3
v′(x)2 − a4V (1 − 4V )

(1 + 2V )2
v(x)v′′(x)

+ a4 4V 2

(1 + 2V )3
v(x)3 + O(a6)

which we then substitute into the second line of (D.2) and Taylor-expand in a. Apart from
the term of order zero, ϕ(V ) = g2t2, the lowest order terms are in a6. We then simply get at
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leading order

g2
i t

2
i − g2t2x

g2
i t

2
i

= a6
(
Aiv(x)

3 + Biv(x)v
′′(x) + Civ

′(x)2 + Div
(4)(x)

)
+ O(a8)

A+ = 8
15 A− = 4

3

B+ = − 6
5 B− = −2 (D.4)

C+ = − 3
5 C− = −1

D+ = 1
5 D− = 3

10

where the index i = ± refers to the critical point z±. Upon setting y = (g2
i t

2
i − g2t2x)/

(g2
i t

2
i a

6/7) and rescaling, respectively, v(x) → 9v(y)/(4a12/7) and v(x) → 3v(y)/(2a12/7),
the differential equations take the standard form

(1) v3 − vv′′ − 1
2 (v

′)2 + 2
27v

(4) = y

(2) v3 − vv′′ − 1
2 (v

′)2 + 1
10v

(4) = y
(D.5)

which we immediately identify with the differential equations governing the double scaling
limit of respectively the Ising model and the Lee–Yang edge singularity [9].

Appendix E. Hard particles on tetravalent bicolourable random graphs

The study is quite analogous to that of section 2.3. The matrix integral takes the same form as
(2.21), but with the potential

V (A1, A2, A3, A4) = A1A2 − A2A3 + A3A4 − g

4

(
A4

1 + A4
4

) − gz

4

(
A4

2 + A4
3

)
. (E.1)

We still have the symmetry Ai ↔ A5−i for i = 1, 2, hence introducing again a family of
monic orthogonal polynomialspn, and keeping notations as n (2.23), we get the two equations

P1

N
= Q2 − gQ3

1

0 = Q1 − Q
†
2 − gzQ3

2.

(E.2)

The potential now satisfies the following additional symmetry property, replacing (2.24):

V (ix1,−ix2, ix3,−ix4) = V (x1, x2, x3, x4) i2 = −1. (E.3)

The operatorsQ1,Q2 still have finite range, as a consequence of (E.2), and read, thanks to the
symmetry (E.3):

Q1 = σ +
7∑

j=1

σ 1−4j r(j)

Q2 = gσ 3 + σ−1s(1) + σ−5s(2) + σ−9s(3)

(E.4)

with the usual shift operator σ , with σ † = σ−1v, where vn = hn/hn−1 as usual, hn = (pn, pn)

the square norm of pn. The adjoint of Q2 reads

Q
†
2 = g(σ−1v)3 + s(1)v−1σ + s(2)(v−1σ)5 + s(3)(v−1σ)9 (E.5)
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and the equations (E.2) boil down to

s(3) = −g4zσ 9(σ−1v)9

s(2) = −g3z
(
σ 5s(1) + σ 2s(1)σ 3 + σ−1s(1)σ 6) (σ−1v)5

s(1) = v − gz
(
σs(2)σ−1 + σ−2s(2)σ 2 + σ−5s(2)σ 5) − g2z

(
σ 2 (

s(1)σ−1)2

+ σ−1s(1)σ 2s(1)σ−1 + σ−2 (
s(1)σ

)2 )
(E.6)

r(1) = gσ 3(σ−1v)3 + gz
(
s(3) + σ−3s(3)σ 3 + σ−6s(3)σ 6

)
+ g2z

(
σs(2)σ−1s(1)

+ σ 5σ (1)σ−5s(2) + σ−2s(2)σ 2s(1) + σ 2s(1)σ−2s(2) + σ−3s(1)σ s(2)σ 2

+ σ 2s(1)σ−5s(2)σ 3) + gzσ 3(s(1)σ−1)3

ν

N
= s(1) − g

(
r(1) + σ−1r(1)σ + σ−2r(1)σ 2)

or equivalently in components:

s(3)n = −g4zvnvn−1 . . . vn−8

s(2)n = −g3zvnvn−1 . . . vn−4
(
s
(1)
n−5 + s

(1)
n−2 + s

(1)
n+1

)
s(1)n = vn − gz

(
g2(s(2)n−1 + s

(2)
n+2 + s

(2)
n+5

)
+ g

(
s
(1)
n−1s

(1)
n−2 + s

(1)
n−1s

(1)
n+1 + s

(1)
n+1s

(1)
n+2

))
(E.7)

r(1)n = gvnvn−1vn−2 + gz
(
g2(s(3)n + s

(3)
n+3 + s

(3)
n+6

)
+ g

(
s(1)n s

(2)
n−1 + s(2)n s

(1)
n−5 + s(1)n s

(2)
n+2

+ s(2)n s
(1)
n−2 + s

(1)
n+3s

(2)
n+2 + s

(2)
n+3s

(1)
n−2

)
+ s(1)n s

(1)
n−1s

(1)
n−2

)
n

N
= s(1)n − g

(
r(1)n + r

(1)
n+1 + r

(1)
n+2

)
.

Upon the redefinitions

Vn = gvn Rn = g2r(1)n Sn = gs(1)n Tn = g2s(2)n Un = g3s(3)n (E.8)

these equations finally reduce to

Un = −zVnVn−1 . . . Vn−8

Tn = −zVnVn−1 . . . Vn−4(Sn−5 + Sn−2 + Sn+1)

Sn = Vn(1 − z(Tn−1 + Tn+2 + Tn+5 + SnSn−1 + Sn−1Sn+1 + Sn+1Sn+2)) (E.9)

Rn = VnVn−1Vn−2 + z(Un + Un+3 + Un+6 + SnTn−1 + TnSn−5

+ SnTn+2 + TnSn−2 + Sn+3Tn+2 + Tn+3Sn−2 + SnSn−1Sn−2)

g
n

N
= Sn − (Rn + Rn+1 + Rn+2).

In the planar limit, each sequence tends to a function of x = n/N, n,N → ∞, which we label
by the same capital letter. Namely writing U = −zV 9, T = −3zV 5S, and also introducing
C = S/V we find

1 = C(1 − 9z2V 6) + 3zV 2C2 (E.10)

gx ≡ ϕ(V ) = CV − 3(V 3 + zV 3C3 − 18z2V 7C2 − 3z2V 9)

= −3V 3(1 − 3z2V 6) + VC2(1 + 45z2V 6)
(E.10)

where we have used the first equation to simplify the second. The critical line is the solution
of ϕ′(V ) = 0. The first line of (E.10) allows computation of

dC

dV
= 6zVC(9zV 4 − C)

1 + 6zV 2C − 9z2V 6
. (E.11)
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Setting W = zV 3, we find

ϕ′(V ) = −((1 − 5W)C − 3V (1 + W))((1 + 5W)C + 3V (1 − W))(2WC − V (1 − W 2))

(2WC + V (1 − W 2))

(E.12)

hence we have three solutions

(1) C = 3V (1 + W)

1 − 5W

(2) C = −3V (1 − W)

1 + 5W

(3) C = V (1 − W 2)

2W
.

(E.13)

The first line of (E.10) allows V to be expressed in terms of W :

(1) V = 1

3(1 − 3W + 5W 2)

(
1 − 5W

1 + W

)2

(2) V = − 1

3(1 + 3W + 5W 2)

(
1 + 5W

1 − W

)2

(3) V = 4W

3(1 − W 2)2
.

(E.14)

We deduce the value of z = W
3V 3 :

(1) z = 9W(1 + W)6(1 − 3W + 5W 2)3

(1 − 5W)6

(2) z = −9W(1 − W)6(1 + 3W + 5W 2)3

(1 + 5W)6

(3) z = 9(1 − W 2)6

64W 2

(E.15)

and finally that of g = ϕ(V ):

(1) g = 2(1 − 5W)4(3 + 24W − 10W 2 + 40W 3 + 35W 4)

27(1 + W)6(1 − 3W + 5W 2)3

(2) g = 2(1 + 5W)4(3 − 24W + 10W 2 − 40W 3 + 35W 4)

27(1 − W)6(1 + 3W + 5W 2)3

(3) g = 16W(1 + W 2)(1 − 10W + 5W 2)

27(1 − W 2)6
.

(E.16)

The tricritical points are solutions in addition of ϕ′′(V ) = 0. In the three above cases, we get

ϕ′′(V ) =




18V (1 − 12W + 5W 2)(−1 − 20W + 35W 2)

(1 − 5W)2
in case (1)

18V (1 + 12W + 5W 2)(−1 + 20W + 35W 2)

(1 + 5W)2
in case (2)

− 3V

16W 2
(1 + 5W 2)(1 − 12W + 5W 2)(1 + 12W + 5W 2) in case (3)

(E.17)

As in the trivalent case of section 2.3, each of the lines (1) and (2) have two tricritical points,
one of which is a cusp, the other coming from the intersection with the critical curve (3).
Moreover the curve (1) is always reached before (2). The cusp solves 1 + 20W − 35W 2 = 0,
while the intersection solves 1 − 12W + 5W 2 = 0. Again, one of the two branches of these
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equations is always reached before the other. We end up with a qualitative picture identical to
that of figure 3, with the cusp and intersection corresponding respectively to the values W±:

W− = 10 − 3
√

15

35
W+ = 6 − √

31

5
(E.18)

while the tricritical point corresponds to the values (z±, g±) given by the case (1) in (E.16)
and (E.15), respectively with W = W± of (E.18), with the exact values

z− = −15 683(−83 151 + 26 080
√

15)

2573 571 875
= −0.136 568 . . .

g− = 2000(129 105 − 24 881
√

15)

235 782 657
= 0.277 724 . . .

z+ = 6561(146 327 − 21 472
√

31)

9765 625
= 17.989 334 . . .

g+ = 80(14 903 − 1067
√

31)

14 348 907
= 0.049 967 . . . .

(E.19)

To get the double scaling limit, we set

Vn = V (1 − a2v(x)) Sn = CV (1 − a2s(x)) (E.20)

and first solve the third equation of (E.9) order by order in a, with the result

s(x) = 1 − 5W

1 + W
v(x) + a2W(1 − 5W)(3 − 10W + 5W 2)

(1 + W)2(1 + 5W 2)
(3v2(x)− 2v′′(x))

− a4W(1 − 5W)(3 − 155W + 650W 2 − 1530W 3 + 1375W 4 − 175W 5)

(1 + W)3(1 + 5W 2)
v(x)3

+ a4W(1 − 5W)(3 − 205W + 355W 2 − 85W 3)

(1 + W)3(1 + 5W 2)
v′(x)2

+ a4 12W(1 − 5W)(1 − 29W + 70W 2 − 190W 3 + 225W 4 − 25W 5)

(1 + W)3(1 + 5W 2)2
v(x)v′′(x)

− a4W(1 − 5W)(9 − 445W + 721W 2 − 121W 3)

(1 + W)3(1 + 5W 2)
v(4)(x) + O(a6). (E.21)

We then substitute this and (E.20) into the last line of (E.9), and Taylor-expand in a. The final
result reads

gi − gx

gi
= a6 (

Aiv(x)
3 + Biv(x)v

′′(x) + Civ
′(x)2 + Div

(4)(x)
)

+ O(a8)

A− = 5
2D− A+ = 3

2D+

B− = −5D− B+ = − 9
2D+

C− = − 5
2D− C+ = − 9

4D+

D− = 27(5 − 3
√

15)

110
D+ = 291 − 49

√
31

5125

(E.22)

which may be put back in the standard forms (D.5). We conclude that the situation for
the hard particle model on vertex-bicolourable tetravalent random lattices is qualitatively
the same as that for trivalent ones: we find two critical points at z− = −0.136 568 . . . and
z+ = 17.989 334 . . . , respectively, in the universality classes of the Lee–Yang and Ising critical
models on random lattices. Note that this model is precisely the gravitational version of the
classical hard square model, as in the dual picture we are considering non-overlapping square
tiles on random, face-bicolourable planar quadrangulations (dual to planar tetravalent vertex-
bicolourable random lattices), hence a random version of the square lattice incorporating its
vertex-bicolourability.
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